ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ имени А.Ф. МОЖАЙСКОГО

629.197.8 M 634

МЕТОД АВТОНОМНОЙ МАРШРУТИЗАЦИИ КОСМИЧЕСКИХ АППАРАТОВ НАБЛЮДЕНИЯ С УПРУГИМИ ЭЛЕМЕНТАМИ КОНСТРУКЦИИ В ПРОЦЕССЕ ЦЕЛЕВОГО ПРИМЕНЕНИЯ

Под общей редакцией доктора технических наук, профессора Ю.С. МАНУЙЛОВА

Санкт–Петербург 2008

УДК 629.197.8 М 634

Авторы: доктор технических наук, профессор Ю.С. МАНУЙЛОВ;

кандидат технических наук **Е.А. НОВИКОВ**; кандидат технических наук **А.М. ПЕТУШКОВ**; **В.В. ЯЩЕНКО**

Рецензент: заслуженный деятель науки и техники РФ,

доктор технических наук, профессор В.С. ГОНЧАРЕВСКИЙ

Общая редакция: доктор технических наук, профессор Ю.С. МАНУЙЛОВ

М-634 Методы автономной маршрутизации космических аппаратов наблюдения с упругими элементами конструкции в процессе целевого применения / Под общ. редакцией Ю.С Мануйлова. – СПб.: ВКА имени А.Ф. Можайского, 2008. – 162 с.

В монографии с системных позиций рассматриваются результаты по исследованию и разработке подходов, методов и алгоритмов автоматического управления целевым функционированием космических аппаратов наблюдения (КАН) со сложными динамическими схемами и присоединёнными упругими элементами конструкции (УЭК) в условиях воздействия структурно - параметрических возмущений. Предложен ряд оригинальных методов, подходов, реализующих их методик и алгоритмов по оценке целевых возможностей КАН с УЭК, управлению пространственным угловым маневрированием и маршрутизацией процессов целевого функционирования КАН в процессе обслуживания групповых целей. Разработаны методики оценивания и проведен комплекс экспериментальных исследований, направленных на получение оценок возрастания целевых возможностей КАН за счёт оптимизации процессов маршрутизации их целевого применения и перенацеливания специального бортового оборудования. Предложена структура и состав специального программного обеспечения аналитико-имитационного моделирующего комплекса оценивания целевых возможностей КАН по обслуживанию групповых целей, а также результаты оценки возможного повышения эффективности целевого применения космических аппаратов рассматриваемого класса за счёт увеличения степени автономности решения задач управления их целевым функционированием.

Монография предназначена для специалистов, занимающихся разработкой, созданием и эксплуатацией автоматических и автоматизированных систем управления космическими средствами, а также специалистов по эксплуатации космических систем наблюдения и может быть использована в учебном процессе в качестве учебного пособия при подготовке инженеров-механиков, инженеров-системотехников и инженеров-математиков, а также слушателями и курсантами соответствующих специальностей при выполнении курсовых и квалификационных работ.

> УДК 629.197.8 © ВКА имени А.Ф. Можайского, 2008

Подписано к печати 12.11.07 Печ. л.10.13 Зак. 1777 Уч.-изд. л.9.75

СОДЕРЖАНИЕ

Список сокращений	5
Введение	8
СИСТЕМНЫЙ АНАЛИЗ И ОБОСНОВАНИЕ НЕОБХОДИМО-	
СТИ ОПТИМИЗАЦИИ ПРОЦЕССОВ АВТОНОМНОЙ МАР-	
ШРУТИЗАЦИИ И ПЕРЕНАЦЕЛИВАНИЯ КОСМИЧЕСКИХ АП-	
ПАРАТОВ НАБЛЮДЕНИЯ С УПРУГИМИ ЭЛЕМЕНТАМИ КОН-	
СТРУКЦИИ	17
1.1 Системный анализ процессов управления целевым	
функционированием космической системы наблюдения	17
1.2 Анализ возможностей оптимизации процесса маршру-	
тизации космического аппарата наблюдения за счет	
повышения оперативности перенацеливания специ-	
ального бортового оборудования	33
1.3 Постановка задачи оптимальной автономной маршру-	
тизации целевого применения космического аппарата	
наблюдения в процессе обслуживания групповых це-	
лей	48
1.4 Обоснование метода решения задачи оптимальной ав-	
тономной маршрутизации целевого применения кос-	
мического аппарата наблюдения в процессе обслужи-	
вания групповых целей	58
2 АНАЛИТИКО-ЙМИТАЦИОННЫЙ МОДЕЛИРУЮЩИЙ КОМ-	
ПЛЕКС ОЦЕНИВАНИЯ ЦЕЛЕВЫХ ВОЗМОЖНОСТЕЙ КОС-	
МИЧЕСКОГО АППАРАТА НАБЛЮДЕНИЯ ПО ОБСЛУЖИВА-	
НИЮ ГРУППОВЫХ ЦЕЛЕЙ	63
2.1 Структура, задачи, пути реализации и технология при-	
менения аналитико-имитационного моделирующего	
комплекса оценивания целевых возможностей КАН	63
2.2 Модель свободного орбитального движения КАН	71
2.3 Модель потенциала взаимодействия КАН с районами	
дислокации элементов групповой цели	83
2.4 Комплексный анализ особенностей динамических схем	
КАН с присоединёнными упругими элементами конст-	
рукции	89
В МЕТОДИКА ОЦЕНИВАНИЯ ЦЕЛЕВЫХ ВОЗМОЖНОСТЕЙ КАН	
ЗА СЧЁТ ОПТИМИЗАЦИИ ПРОЦЕССОВ МАРШРУТИЗАЦИИ	
ИХ ЦЕЛЕВОГО ПРИМЕНЕНИЯ И ПЕРЕНАЦЕЛИВАНИЯ СПЕ-	
ЦИАЛЬНОГО БОРТОВОГО ОБОРУДОВАНИЯ	93
3.1 Методика оценивания целевых возможностей КАН по	
обслуживанию групповых целей	93

3.2 Формализация задачи оптимального по быстродейст- вию управления пространственным разворотом КАН с	
присоединёнными УЭК 3.3 Решение задачи оптимального по быстродействию	97
управления пространственным разворотом КАН с при- соединёнными УЭК	100
3.4 Синтез оптимальной программы управления разворо- том КАН с присоединёнными УЭК на основе решения	106
4 МЕТОД И АЛГОРИТМЫ ОПТИМАЛЬНОЙ МАРШРУТИЗАЦИИ ПРОЦЕССОВ ЦЕЛЕВОГО ПРИМЕНЕНИЯ КОСМИЧЕСКОГО	100
АППАРАТА НАБЛЮДЕНИЯ ПРИ ОБСЛУЖИВАНИИ ГРУППО- ВЫХ ЦЕЛЕЙ	113
дач оптимальной маршрутизации целевого применения КАН	113
4.2 Алгоритм оптимальной маршрутизации процессов це- левого применения КАН на основе процедуры случай-	
ного направленного поиска	116
цированного симплекс-метода	120
левого применения КАН на основе процедуры последовательного сужения множества альтернатив	124
маршрутизации целевого применения КАН в режиме автономного полёта	127
4.6 Алгоритм динамической коррекции приоритетов целей для повышения качества решения задач маршрутиза- ции и целераспределения на борту КАН в режиме ав-	
тономного полёта 5 БОРТОВОЙ КОНТУР УПРАВЛЕНИЯ ОПТИМАЛЬНОЙ МАР- ШРУТИЗАЦИЕЙ ПРОЦЕССОВ ЦЕЛЕВОГО ФУНКЦИОНИРО-	132
ВАНИЯ КОСМИЧЕСКОГО АППАРАТА НАБЛЮДЕНИЯ 5.1 Структура бортового контура оптимальной автономной маршрутизации процессов ЦФ КАН в процессе обслу-	136
живания групповых целей	136
шрутизации ЦП КАН в процессе обслуживания группо- вых целей	
1 /1	144 162
4	